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ABSTRACT:
The acoustical performance of a submerged linear array of spherical transducers is

examined by combining the T-Matrix method of solving for multiple acoustic interactions
among separate bodies with a model for the transducers as thin spherical elastic shells.
This approach solves the fully coupled problem of the response of the array to internal
forcing. The results show that the assumptions giving rise to the Chebyshev criteria
for optimal arrays of point sources appear to apply well even for large spheres at low
frequencies. However, at frequencies near or above the lowest resonant frequency the
directional pattern may be degraded, depending on the material of the shells.
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Introduction

The determination of the acoustical field due to several separate radiating and/or scat-
tering bodies is a problem of considerable practical importance, and has been extensively
studied. The present work concerns the interactions of an array of spherical radiators,
considered to be elastic shells, in an unbounded medium.

While there has been much related work on scattering from spheres and on radiation
from different geometries, e.g., cylindrical radiators or flat disks, the previous work on
multiple spherical radiators is not extensive. Karnovskii (1941, 1956) examined the effect
on the resistive portion of the impedance of a spherical radiator due to the presence of
other radiators in an array, under the assumptions that the wavelength is much larger
than the radiator, and the surface velocity of each radiator is specified. New and Eisler
(1972) applied a more accurate method, with no restriction on wavelength, to the problem
of a pulsing sphere near a rigid sphere. Their method of accounting for multiple acoustic
interactions (equivalent to that used by Marnevskaya (1969, 1970) for scattering from two
spheres) involves decomposing the total acoustic field into waves radiated from each sphere,
which in turn are expanded in terms of spherical waves. The boundary conditions on each
sphere are satisfied by translating the coordinate origin of each other sphere to that of the
first by means of an “addition theorem” for spherical waves (Friedman and Russek, 1954).
We use the same method here.

Waterman (1969) developed this method more generally for scattering from a body
of arbitrary shape. This was extended to apply to several bodies by Peterson and Ström
(1974), and also by Varadan and Varadan (1981). This technique of finding multiple
acoustic interactions is commonly referred to as the “T-matrix” method.

Thompson (1977) extended the work of New and Eisler by considering different ve-
locity distributions on the two spheres: both spheres pulsing or both oscillating, in or out
of phase. Reese and Thompson (1981) further considered the next higher axisymmetric
mode of vibration (n = 2), and Thompson and Reese (1983) considered the combination
of one pulsing and one oscillating sphere.

In all of the aforementioned work, the surface velocities on the spheres are assumed to
be known a priori, i.e., the spheres are treated as perfect velocity transducers. In this way
the above work is idealized in the sense that the effects of fluid loading on the structures
are not taken into account.

Much work has been done on scattering by elastic bodies which does account for
the coupling between the acoustic field and the elastic deformation. Here, we mention
only a few relevant papers. Junger (1952) examined the scattering of plane waves by a
thin spherical shell. Forced vibrations of a spheroidal shell, and the resulting acoustic
field, were considered by Yen and DiMaggio (1967). Böstrom (1980) developed a method,
closely related to the T-Matrix method, for acoustic scattering from an elastic body of
arbitrary shape. In his paper, he gives numerical results for spheroid and “peanut” shaped
scatterers. Other researchers have employed the T-Matrix method to treat scattering from
bodies of more complicated geometry, e.g., Peterson et al. (1980). Seybert et al. (1988)
have recently investigated radiation by a forced thick spherical shell by a boundary-element
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method. In all of the above mentioned works dealing with elastic radiators, it should be
noted that results are given only for a single radiator rather than for an array.

Here we consider an array made up of a small number of radiators in an unbounded
medium. The method used combines the “T-Matrix” method for multiple acoustic in-
teractions with a mechanical model of each radiator, treated as a thin elastic spherical
shell with specified internal forcing. This approach solves the coupled problem for the
acoustic field (including multiple-scattering effects) and the motion of the elastic shells.
While we consider the radiation problem, the method is equally applicable to the combined
radiation-scattering problem, by the inclusion of an externally applied incident acoustic
field.

The linear array considered is comprised of three identical spherical shells, which are
forced by a uniform pressure along the inside of each shell, thereby exciting the lowest
(pulsing) mode. For comparison, we solve the same problem for spheres which have their
surface velocities specified. We find that the theoretical predictions for an array of point
sources with Chebyshev spacing and shading apply well to the array considered when the
frequency of excitation is less than the lowest resonance frequency of a single spherical shell
in water. This corresponds to values of roughly ka = 1.0 for the case of steel shells, where
a is the radius of the shells, and k = ω/cf . For frequencies above the lowest resonance
frequency the theoretical predictions can also be very good depending upon the material
properties of the scatterers involved and whether or not they are being excited at resonance.

Method

The acoustic field p in an unbounded medium containing a finite number of bodies
(M) can be written as the sum of radiated pressures from each body pj and the incident
pressure p0 (if any):

p(x) = p0(x) +
M∑

j=1

pj(x) (1)

where p is the total pressure (complex), x is vector position and all variables are assumed
to vary harmonically in time as e−iωt, with angular frequency ω. Hereafter we consider
only the radiation problem for driven transducers, i.e., we assume there is no incident
pressure.

Each of the radiated pressures pj can be expressed as a series whose terms Φmn form
a complete set of separable radiating solutions to the reduced Helmholtz equation in a
particular coordinate system. Here we use spherical harmonics, but one could instead use
spheroidal or ellipsoidal harmonics. Then:

pj(rj, θj, φj) =
∞∑

n=0

n∑

m=−n

Ajmnh(1)
n (krj)Y m

n (θj , φj) (2)

Here (rj , θj, φj) are spherical coordinates relative to the center of radiator j, Ajmn is the
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amplitude of the corresponding spherical wave, which is the product of the spherical Han-
kel function h

(1)
n (krj) (k = ω/c is the wavenumber) and the surface spherical harmonic

Y m
n (θj, φj) = Pm

n (cos(θj)) eimφj , where Pm
n is the associated Legendre function. For arbi-

trarily shaped bodies, this expansion is only valid exterior to all the spheres circumscribed
about each body (Waterman, 1969), but since we assume spherical radiators, the expansion
is valid throughout the medium.

If the normal velocities uj at the surface of each spherical radiator are known a priori
then solving the multiple-scattering problem amounts to satisfying the boundary conditions
on the surface of each sphere:

∂p

∂rj

∣∣∣∣
rj=aj

= (iρck) uj , j = 1, 2, . . .M (3)

This is facilitated by the “addition theorem” that expresses a spherical wave relative to
one origin as a series of spherical waves relative to another origin (Friedman and Russek,
1954). We use the form of the addition theorem given by New and Eisler (1972), based on
the formulation of Sack (1964). Thus the complete acoustic field p due to all the radiators
can be represented in terms of spherical waves relative to any one particular radiator (j):

p(rj , θj, φj) =
∞∑

n=0

n∑

m=−n


Ajmnh(1)

n (krj) +




M∑

k=1,k 6=j

Bjkmn


 jn(krj)


 Y m

n (θj, φj) (4)

where jn(krj) is the spherical Bessel function of the first kind, and the coefficients Bjkmn

are given by the addition theorem of the form

Bjkmn =
∞∑

ν=0

ν∑

µ=−ν

Tjkmnµν Akµν (5a)

Tjkmnµν =
ν+n∑

s=|ν−n|

a(n, s, ν, m, µ)h(1)
s (krjk)Y µ−m

s (θjk, φjk) (5b)

where the summation over s is in increments of 2, the coordinates (rjk, θjk, φjk) give the
center of sphere j relative to that of sphere k, and the translation theorem coefficients
a(n, s, ν, m, µ) are given in New and Eisler (1972). This representation applies everywhere
within any sphere centered on radiator j that excludes all the other radiators, and in
particular applies on the surface of radiator j.

The normal derivative of pressure at the surface of radiator j is found from (4) by
replacing the Hankel and Bessel functions h

(1)
n (krj), jn(krj) by their derivatives, evalu-

ated at kaj , where aj is the radius of sphere j. This gives a series in terms of the surface
harmonics Y m

n . The surface normal velocities uj are likewise expanded in terms of surface
harmonics, with coefficients Ujmn. Due to the orthogonality of these functions, the coef-
ficients of Y m

n on each side of the series representation of equation (3) must be equal for
each sphere. In this way, the boundary conditions for the complete set of spheres reduce
to a matrix equation of the form

Ya A = U (6)
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Here, the vectors A and U represent respectively the coefficients Ajmn for the radiated
pressure field (as in Eq. 2) and the coefficients Ujmn in the expansion of the normal surface
velocity, while Ya is an acoustic admittance matrix that accounts for all the multiple
scattering. Given the surface velocities on each sphere, one can solve for the acoustic
field (A) by a matrix multiplication of equation (6) by the acoustic impedance matrix

Za =
(
Ya

)−1

.
The above approach assumes the radiators are ideal velocity transducers in that their

surface velocity is entirely independent of the acoustic loading. Instead, the radiators
can be treated more realistically as thin spherical elastic shells, with internal drivers that
apply a known force. The resulting motion of the shells is then due to a combination of
internal forcing and acoustic loading. This fully accounts for the acoustic coupling of the
fluid/structure interactions.

The motion of a thin elastic spherical shell subject to harmonic forcing is well known.
We use the thin shell equations of motion which are equivalent to the formulation given
by Junger and Feit (1972) with β = 0. The surface normal motion can be represented
in terms of spherical harmonics, each corresponding to two normal modes of vibration of
the shell (or one mode for n = 0). Associated with each normal mode of vibration of
the shell is a mechanical impedance. Utilizing this impedance, the coupled fluid/structure
equations reduce to a set of linear algebraic equations (as above):

F − A = Zm U (7)

where the vector F represents the coefficients Fjmn for the internal forcing, and the matrix
Zm is the mechanical impedance matrix, which is diagonal. (The pressure term is negative
because the pressure acts inward, not outward.)

The modal impedances of the jth radiator along the diagonal of Zm are given by:

Zjmn = −
a2

j (1 − ν2)
Eh

{
Ω2 − ν − λn + 1

(Ω2 − ν − λn + 1)(Ω2 − 2(1 + ν)) − λn(1 + ν)2

}
(8)

where the scaled frequency is Ω2 = a2
jω

2(1− ν2)ρ/E, aj is the sphere radius, h is the shell
thickness, ρ is the density, E is Young’s modulus, ν is Poisson’s ratio, and λn ≡ n(n + 1).
Note that, in this thin-shell approximation, for a given number n of nodes, all the surface
harmonics corresponding to different azimuthal dependence numbers m have the same
impedances.

Combining equations (6) and (7) produces a matrix equation which can be solved for
the surface motion directly in terms of the forcing:

U =
(
Zm + Za

)−1

F (9)

This demonstrates that for the coupled problem, the total effective impedance is the sum
of the acoustic impedance and the mechanical impedance. (This simplicity is a result of
the spherical geometry of each transducer.) The velocities then yield the acoustic field
through equation (6).
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The far-field radiation is more conveniently expressed in terms of spherical waves
relative to a single system coordinate origin (rather than by equations 1 and 2). This
entails applying the addition theorem again, in a slightly different form, to express the
radiation from each radiator in terms of the system origin. Using the index zero to indicate
the system origin, the appropriate addition theorem is:

p(r0, θ0, φ0) =
M∑

j=1

∞∑

n=0

n∑

m=−n

Ajmn

{ ∞∑

ν=0

ν∑

µ=−ν

jν(kr0k)Y µ
ν (θ0k, φ0k)

[

n+ν∑

s=|n−ν|

a(ν, s, n, µ, m)h(1)
s (kr0)Y m−µ

s (θ0, φ0)
]}

(10)

where the summation over s is in increments of 2 and the notation follows that of equations
(4) and (5). This representation applies anywhere outside a sphere centered at the origin
that contains all the radiators.

In practice, the infinite sums over mode numbers (n and ν) must be truncated at some
particular number, say N . (Then in equation 10, the sum over ν would go up to 2N for
consistency.) Also, if the array is linear and the forcing is axisymmetric about this line,
only axisymmetric modes (m = 0) will be excited, eliminating all sums over m and µ.

To summarize our method, given the geometry of the array, the properties of the
medium, and the operating frequency, the acoustic impedance matrix Za can be calculated,
up to the chosen number of modes N , through the addition theorem. From the material
properties and thickness of each shell, the mechanical impedance matrix Zm can be found.
The sum of the two gives the total impedance matrix, which can be used to determine the
surface motion of each transducer, given a prescribed internal forcing. The motion in turn
determines the acoustic field, which in the far field is given by a second application of the
addition theorem.

Results

Numerical results are presented which: 1) demonstrate that the spherical addition
theorems have been correctly applied; 2) illustrate the response of a small linear array of
radiating spherical shells given Chebyshev shading; and, 3) examine convergence properties
of the truncated infinite series of spherical harmonics over a specified frequency window.

To confirm that the translation formulas for the spherical harmonics have been cor-
rectly applied, results reported in New and Eisler (1972) were reproduced for the particular
problem of two submerged spheres, one of which is pulsing harmonically, while the other
acts like an acoustically hard obstacle. Fig. 1 displays the reactance and resistance terms
of the acoustic impedance which have been scaled by their corresponding values obtained
from a single harmonically pulsing sphere. Variations about unity represent the extent to
which the reactance and resistance of the pulsing sphere are affected by the presence of
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the second sphere. As one would expect, and as can be seen from Fig 1, the interaction
effect is mitigated as the scaled distance (kr) between spheres is increased.

Note that there is excellent agreement between the present calculations, using four
spherical harmonics, with those of New and Eisler (using eleven). Fig. 2 plots the corre-
sponding far field pattern of the present code against that of New and Eisler once again
showing very good agreement. The far field results of Fig. 2 have been scaled by the
magnitude of the far field produced from a single pulsing sphere.

For the array problem, the three spheres are centered at (0, 0, 0) and (0, 0,±D). The
material properties (assuming steel) and dimensions of the shells used are as follows:

Radius, a = 1.0m
Thickness, h = .01m
Young’s Modulus, E = 2.07x1011x(1 + iη)N/m2

Structural Loss Factor, η = 0.0 or 0.1
Poisson’s Ratio, ν = 0.3
Shell Density, ρs = 7669Kg/m3

Fluid Density, ρf = 1000Kg/m3

Fluid Sound Speed, cf = 1524m/sec
Scaled Center to Center Spacing, kD = π or D/λ = 1/2.

The Chebyshev criteria for an array of point sources suggests that one can control the
magnitude of the side lobes relative to the main lobe by adjusting the amplitudes of the
forcing functions applied to the surfaces of the spheres (Dolph, 1946). Here the spheres on
either side of the center sphere are given relative amplitudes 11/18ths that of the center
sphere (which is subject to a uniform pressure of 1µPa) to give a 20dB drop. Given the
half wavelength spacing of the spheres, and the foregoing amplitudes, the main lobe should
appear at θ = 90 degrees, with side lobes (magnitudes 20dB less than the center lobe) at
θ = 0 and 180 degrees.

In the results that follow, the source level (SL) of the array of radiators is defined by

SL = 10log10

[
lim

r→∞

(
krp(r, 0, π/2)

1µPa

)2
]

. (10)

The above source level is in practice found by taking the far field pressure, and scaling it
to 1µPa. Far field results are scaled in an equivalent fashion.

Fig. 3 displays the radiation pattern at ka = 1.13, which is near the first resonance
frequency for a submerged spherical shell. The convergence of the truncated series is shown
by varying the number N of spherical harmonics retained. It can readily be seen that the
series solution for the pressure has converged with the inclusion of 6 terms. In subsequent
results 11 harmonics are used to obviate convergence concerns.

Fig. 4 compares the far field results at four different frequencies; ka = 0.9, ka = 1.0,
ka = 1.25, and ka = 1.5. It can be seen that for the low frequency cases the Chebyshev
array produces a result matching that of an idealized Chebyshev array, in that the nulls
appear where they should, and the pressure at 90 degrees is 20dB greater than the pressures
at 0 and 180 degrees. The trend, however, as the frequency is increased, is that the
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response smooths out. The nulls have nearly vanished, and the far field appears to be
tending towards a uniform far field pressure. The conclusion is that at low frequencies
Chebyshev optimality is preserved, while at higher frequencies optimality is destroyed.

To examine the effect of varying the frequency on the response of the array, Fig. 5
graphs the SL calculation over the frequency range ka = 0.01 to ka = 1.5. Three curves
are shown which correspond to arrays of spheres with prescribed surface velocities; as well
as damped (η = 0.1), and undamped (η = 0.0) thin-walled spherical shells. The response
curves appear to be relatively smooth in all cases below frequencies about ka = 1.0. The
response curve of the array of spheres with prescribed surface velocities is in fact smooth
throughout the frequency window, while that of the spherical shells without damping has
a prominent dip at ka = 1.13, at which point the SL drops by almost 15dB. A second
less significant spike appears at ka = 1.44. The introduction of the mechanical damping
has the effect of smoothing out the spikes at these anomolous frequencies, especially at
ka = 1.44 where the spike completely disappears in the damped response.

To more carefully analyze the array response about ka = 1.13, Fig. 6 plots the
directional responses of the array from ka = 1.11 to ka = 1.14. At ka = 1.13 it is seen that
the peak at θ = 90 degrees dips, leaving lobes at θ = 60 and 120 degrees. This frequency
is slightly less than the lowest eigenfrequency of a single submerged spherical shell, which
is at about ka = 1.15. The response at ka = 1.13 would appear resonable in light of the
fact that the n = 2 spherical harmonic takes on its most negative value at θ = 90 degrees
as it has a θ dependence similar to cos(2θ). The spike at ka = 1.44 is likewise very close
to the eigenfrequency of the n = 3 spherical harmonic.

To further support the contention that the spikes occuring in the shell response of fig.
5 are due to resonance effects fig. 7 is included. Fig. 7 plots directional response curves
for the array of spheres with specified surface velocities at identical frequencies to those
displayed in fig. 4 for the steel shells. Notice that at each frequency of fig. 7, the response
changes little, and in fact is very close to the predicted values for an idealized Chebyshev
array.

Figs. 8 and 9 are equivalent to figs. 5 and 4 except that aluminum spherical shells are
used. All dimensions are the same as for the steel shells. The pertinent material properties
used for aluminum are:

Young’s Modulus, E = 7.10x1010x(1 + iη)N/m2

Poisson’s Ratio, ν = 0.33
Shell Density, ρs = 2700Kg/m3.
As is seen from examination of fig. 8, a spike in the source level response is found

at ka = .76 which agrees with the eigenfrequency of the n = 2 spherical harmonic. The
spike is not as dramatic as in the case of the steel shell, and in fact upon viewing the far
field response at this frequency, the n = 2 harmonic is only slightly excited, causing only
a slight deformation of the far field response. To show that the aluminum shells act more
like an idealized Chebyshev array, fig 9 plots four far field curves above ka = .76. It can
be seen that the idealized shape is roughly maintained. The above evidence suggests that
for at least certain materials, excitation above resonance does not necessarily degrade the
idealized Chebyshev output of the array.

Finally, figure 10 compares the directional patterns due to arrays of point sources,
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spheres with prescribed surface velocities, steel shells, and aluminum shells, for ka = 1.0.
This shows that the main geometric effect of using large spheres rather than point sources
is that the nulls at 30 and 120 degrees are less pronounced for large spheres. The effects
of differing materials and driving (force vs. velocity) primarily give different overall levels
of output, with similar directional dependence, at this frequency.

In conclusion, more work needs to be done in exploring the interactions of radiating
arrays and the present methodology appears to provide a versatile tool with which this can
be done. One advantage of the present technique over many of the methods currently used,
is that in the performance of the array at a particular frequency, the amount of excitation
of each eigenmode of the shells can be seen explicitly. This cannot be done easily if
the problem has been solved numerically via finite difference, finite element, or boundary
element methods. Furthermore, the acoustic impedance is found independently of the
mechanical impedance, which breaks the coupled problem into two simpler problems. Thus
in exploring, say, the effects of the radiator material and shell thickness for a particular
array geometry, the acoustic impedance need be computed only once, and then coupled
with the mechanical impedance of each type of radiator. In future work we plan to use
this approach with more complicated transducer models.
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Figure Captions

Figure 1. Resistance and reactance for one pulsing sphere (velocity prescribed) near a hard
sphere, normalized by the value in the absence of the second sphere, as a function of the
scaled distance kr between the sphere centers.

Figure 2. Normalized far field directional dependence; same configuration and comparison
as in Figure 1, for kr = 3.

Figure 3. Directional pattern for Chebyshev array of three steel spherical shell radiators,
near a resonance (ka = 1.13), calculated using varying numbers of harmonics N . (Grid
circle intervals are 20dB.)

Figure 4. Frequency dependence of directional pattern of array (as in Figure 3).

Figure 5. Main lobe level as a function of frequency for three similar arrays using dif-
ferent radiators: elastic steel shells, steel shells with material damping (complex Young’s
modulus), and ideal velocity transducers for comparison.

Figure 6. Resonance effects on directionality: the pattern is shown for four frequencies
near resonance.

Figure 7. Frequency dependence of directional pattern of an array of ideal velocity trans-
ducers.

Figure 8. Main lobe level as a function of frequency (as in Figure 5) for elastic aluminum
shell radiators.

Figure 9. Same as for Figure 4, except that the shells are composed of aluminum rather
than steel.

Figure 10. Comparison of directional patterns for point sources, ideal velocity transducers,
steel shells, and aluminum shells, for ka = 1.
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